
Hekaton
Large Scale System Management with Python

Akron Linux Users Group - May 2009

who are you?
@mcrute
mcrute@gmail.com
mike.crute.org

AGINTERACTIVE

The Road Ahead

python tutorial

use-case

first-try solution

python solution

Python
here be snakes

From 50,000 Feet

python basics

the standard library

useful modules

examples

Why Python Rocks

very newbie friendly

multi-paradigm, do things your way

simple tasks are simple

runs anywhere

awesome standard library

Code, Please
import os
import shutil

def make_backup(to_backup):
 try:
 location = os.environ.get['BACKUP_LOCATION']
 except KeyError:
 raise Exception('Backup location not found.')

 if os.path.isdir(to_backup):
 shutil.copytree(to_backup, location)
 else:
 shutil.copyfile(to_backup, location)

make_backup('~/Documents')

The Basics
An introduction to python

Language Overview

types

standard constructs

error handling

classes

some examples

Python is Simple

no pointers

no types

everything is an object

indentation matters

Poking About

just run `python` for an interactive shell

dir(object) to inspect it

help(object) for some documentation

Types

mutable types - list, dict, set, file

singleton types - int, float, str, bytes, booleans, None

immutable types - tuple

user-defined subtypes

Tuples and Set

tuples are immutable lists

 created using ()

can cast a list to a tuple

sets are lists of unique members

support mathematical set operations like union

fronzenset equivalent to tuple

Dictionary Type

called hash maps in many languages

map keys to values

do not preserve order

keys must be hashable

support iteration through views

denoted by { }

Standard Constructs
Support for all the standard constructs

if Statements

if os.path.exists('/tmp'):
 # do something
elif os.path.exists('/test'):
 # do something else
else:
 # do something more
finally:
 # always do this

while Statements

while True:
 stuff = do_some_stuff()

 if stuff:
 break

for Statements

for i, word in enumerate(word_list):
 print(‘{0} => {1}’.format(i, word))

Classes
class User(object):
 _logged_in = False

 def __init__(self, username, name='John Doe'):
 self.username = username
 self.name = name
 self.password = name + username

 @property
 def logged_in(self):
 return self._logged_in

 def send_username(self, socket):
 self.login()

 if self.logged_in:
 socket.send(self.username)

Classes

user = User('jdoe')
print(user.real_name) # John Doe
print(user.logged_in) # True

Error Handling

try:
 data_file = open('/tmp/foo', 'w')
 data_file.write(‘testing’)
except IOError:
 print(“Can't open file.”)
 raise
finally:

if hasattr(data_file, ‘close’):
 data_file.close()

import Code

import os
import os.path
import os.path as path_module
from os.path import isdir, isfile

Standard Library

Important Modules

os - operating system functions

shutil - shell functions

sys - system/python functions

urllib - curl-like functions

re - regular expressions

optparse - getopt replacement

Useful Modules

json - deal with json data

configparser - parse ini files

subprocess - launch subprocesses

xml.etree - process xml

datetime - deal with dates

Check out the docs
http://docs.python.org/library/

More Modules

Python Package Index

repository for third-party modules

easy to install

modules for most common tasks

even contains full applications

analogous to CPAN

Get It

http://peak.telecommunity.com/dist/ez_setup.py

run this as root

you now have easy_install

run easy_install as root

easy_install

python package manager

downloads packages from pypi

can also upgrade those packages

Removing Packages
Try not to think about it

Great Modules

dateutil - parse dates

pyyaml - deal with yaml files

mysqldb - talk to mysql servers

path - simple path manipulation

LOTS more...

Get modules
http://pypi.python.org

Examples

Questions

Endeca
find the needle in the haystack

The Problem

Complex Environment

5 different code environments

3 different data environments

must be kept in-sync

servers managed by operations team

application managed by content team

High Visibility

everybody wants it

business wants control

drives our main sites

Limited Resources

small core team

automation is a must

Vendor Framework

operational framework provided

still evolving

very robust in a single environment

designed primarily for operations staff

supplementation required

“The only way we can
succeed is through

ruthless automation.”

First Attempt

Approach

bash scripts

mini-framework in bash

Benefits

really quick to develop

pretty simple

good enough for now

let us use vendor tools

Downsides

gets complex quickly

not easy to extend

not everyone groks bash

still required engineering involvement

End Result
It kinda sucked, so we dumped it.

The Solution

Approach

python framework for management

leverages our operations tools

simple to use and extend

understands web-enabled commands

Benefits

reduced time to deploy features

easier for others to understand

easier to hide complexity

solves our entire problem

Downsides

took time to develop

requires some knowledge of python

more complex

Hekaton
Our little hero

Hekaton?

endeca | cut -dn -f2
deca == 10
deca * 10 == 100
100 | greek = hekaton

It is

100% python

simple

application framework

ties into our webops framework

It isn’t

actually an application

terribly general purpose

open-sourced

Simple Commands

@hekaton_command('show-config')
def show_config(info, sysargs):
 "print the loaded config"
 print(get_config())
 return 0

Complex Commands
@hekaton_command('do-overlay')
class OverlayController(BaseCommand):
 "replace $WORKING_DIR definitions in control scripts"

 def run_command(self):
 for script in (self.info.appdir/'control').files('*.sh'):
 lines = script.lines()

 for i, line in enumerate(lines[:]):
 match = self._working_dir_def.match(line)
 if match:
 replacement = self.working_dir.format(self.appname)
 lines[i] = line.replace(match.group(1), replacement)

 script.write_lines(lines)

 return 0

Command-line

everything is a sub-command

provides useful help and usage

tab completion for all

Web Commands
@hekaton_command('agi-merch-rule-moves')
class MerchRulesWSGIAppController(PipelineEnabledCommand):

 def __init__(self, request, response_class):
 self.request = request
 self.response = response_class()

 def run_web_command(self, environ, start_response):
 if not self.request.GET.get('action'):
 tmpl = get_template('merch_rule_moves.hjin')
 self.response.body = tmpl.render(**self.tmpl_vars)
 else:
 try:
 raw_action = self.request.GET.get('action', '')
 getattr(self, action_attr)()
 except AttributeError, exc:
 self.bad_request()

 return self.response(environ, start_response)

Environment Handling

completely abstracted from commands

paths are mangled automatically

configuration provided per-environment

hostnames provided per-environment

Scheduler

works a lot like cron

“free” with the framework

easier to run hekaton commands

easier to manage for us

possibly not the best solution for everyone

Scheduler
AGI:
 all:
 scheduler:
 - job_name: build-indexes
 run_every: 1 hours
 - job_name: cleanup-logs
 run_every: '1 day at 3:00'

 production:
 scheduler:
 - job_name: mail-reports
 run_every: '1 week at 0:00'

with_args: '-t 3'

Demo

Questions

