
Python Abstract
Syntax

Code Spelunking in Python

Cleveland Python Users Group - March 2009

Who are you?
@mcrute

mike.crute.org

AGINTERACTIVE

Abstract Syntax Trees?

High-level view of code without any actual code

Represents the concepts of the code

Different from Concrete Syntax Trees

Represent the actual parsed grammar

Side effect of compilation

Part of the compiler package (for now)

AST represents code, it’s not actually the code itself.
Prior to 2.5 python did not generate an intermediate
Concrete syntax trees, aka parse trees.

History Lesson

Introduced in 2.2

Created by Greg Stein and Bill Tutt

Part of Python-to-C compiler project

Pure python implementation until 2.6

Major changes in 2.5, 2.6 and 3.0

Changes in 2.5

Introduced _ast module

Provides only node classes

Provided access to compiler AST

Not very useful yet, building the future

Passing _PyCF_ONLY_AST as a flag to compile will give access to the compiler’s This is different than the one
generated by compiler.ast

Changes in 2.6

Introduction of ast module

Total reliance on the compiler’s AST

Introduced NodeTransformer

Deprecated compiler package

AST trees can now be compiled to bytecode

Changes in 3.0

Removal of compiler package

Last remnants of original AST now gone

Compiler Tourism

Take a quick tour through the Python compiler. This process has changed a couple of times in recent years.

The Dark Ages (pre-2.5)

1. Generate parse tree

2. Emit bytecode

Quick and dirty way to do bytecode generation. Wasn’t really the easiest way but fast to implement. (See PEP 339)

def test():
 return 2*2

(257,
 (266,
 (291,
 (261,
 (1, 'def'),
 (1, 'test'),
 (262, (7, '('), (8, ')')),
 (11, ':'),
 (299,
 (4, ''),
 (5, ''),
 (266,
 (267,
 (268,
 (274,
 (277,
 (1, 'return'),
 (326,
 (303,
 (304,
 (305,
 (306,
 (307,
 (309,
 (310,
 (311,
 (312,
 (313,
 (314,
 (315, (316, (317, (2, '2')))),
 (16, '*'),
 (315, (316, (317, (2, '2')

)))))))))))))))))),
 (4, ''))),
 (6, ''))))),
 (4, ''),
 (0, ''))

0 LOAD_CONST 2 (4)
3 RETURN_VALUE

Keep it simple, CST’s get crazy quickly. parser module gives you access to parse trees. dis module (disassemble)
gives you access to bytecode.

Simple, right?
Not so much.

Not really all that easy to maintain, forced to go from parse tree to bytecode in one shot isn’t easy, error prone.

23 years
and still
the best

23 years and still kicking! Still the authoritative reference for compiler builders. Newer python compilers
implemented using the algorithms described in the book.

Anybody read it? You’ll feel much more at home now.

The World Since 2.5

1. Generate parse tree

2. Parse tree => AST

3. AST => Control Flow Graph (CFG)

4. CFG => Bytecode

def test():
 return 2*2

(257,
 (266,
 (291,
 (261,
 (1, 'def'),
 (1, 'test'),
 (262, (7, '('), (8, ')')),
 (11, ':'),
 (299,
 (4, ''),
 (5, ''),
 (266,
 (267,
 (268,
 (274,
 (277,
 (1, 'return'),
 (326,
 (303,
 (304,
 (305,
 (306,
 (307,
 (309,
 (310,
 (311,
 (312,
 (313,
 (314,
 (315, (316, (317, (2, '2')))),
 (16, '*'),
 (315, (316, (317, (2, '2')

)))))))))))))))))),
 (4, ''))),
 (6, ''))))),
 (4, ''),
 (0, ''))

0 LOAD_CONST 2 (4)
3 RETURN_VALUE

Module(None,
Stmt([

Function(None, 'test', (), (), 0, None,
Stmt([

Return(
Mul((

Const(2),
Const(2))))

]))
]))

‘round and ‘round we go.
Same basic process as 2.3 except that AST is generated in the middle.
Purposely ignoring CFG because it’s not accessible to us.

That’s better!
We can work with that.

Possible Uses

Code spelunking

Template engines

Language conversion

Static analysis

Runtime code manipulation

... the possibilities are endless...

Code Spelunking

Code is just text content

Legacy code not safe for intropsection

Determine relationships in the code

Find unused code in a large codebase

Template Engines

Still have to parse the code

No more string concatenation

Safer and easier to build

Language Conversion

Originally for Python-C compiler

Can transform Python to other languages

XSLT of Code (sorry)

Static Analysis

Enforce coding standards (PEP8)

Detect potentially complex code

Determine where re-factoring may be helpful

Runtime Code Manipulation

Not a very nice thing to do

May be useful in places where using string
concatenation to build up functions

Not a very nice thing to do

On second thought... don’t do this

Provided Tools

NodeVisitor

Walks the node tree

Allows for read-only processing of nodes

Subclass of NodeVisitor

Implement your visit_Node funtions

The Visitor

class ImportVisitor(ASTVisitor, object):

 def visitImport(self, node):
 for name in node.names:
 self.put_symbol(name[0])

 def visitFrom(self, node):
 symbols = []
 for symbol, _ in node.names:
 symbols.append(symbol)
 self.put_symbol(node.modname, symbols)

Usage

my_file = open(‘/Users/cruteme/Desktop/test.py’).read()

tree = compiler.parseFile(‘/Users/cruteme/Desktop/test.py’)
or preferably
tree = compile(my_file, ‘<string>’, ‘exec’, ast.PyCF_ONLY_AST)

my_visitor = ImportVisitor()
my_visitor.virtual_symbols = get_virtual_symbols(tree)
visitor.walk(tree, my_visitor)

Results

set(['InvitationsCategoryResultsPage',
 'DownloadsSearchResultsPage',
 'DesktopDownloadsCategoryResultsPage',

 ...
])

NodeTransformer

New in 2.6

Specialized NodeVisitor

Allows for transformation of nodes in-place

Can remove nodes in a tree

Code?
class GenshiSemantics(NodeTransformer):

 def context(self, method):
 return Expr(Call(
 Attribute(Name('data', Load()), method, Load()),
 [], [], None, None
))

 def visit_For(self, node):
 self.generic_visit(node)
 return [self.context('push'), node, self.context('pop')]

 def visit_Name(self, node):
 self.generic_visit(node)
 return Subscript(
 Name('data', Load()),
 Index(Str(node.id)),
 node.ctx
)

Usage

my_file = open(‘/Users/cruteme/Desktop/test.py’).read()

tree = compile(my_file, ‘<string>’, ‘exec’, ast.PyCF_ONLY_AST)

out_tree = GenshiSemantics().visit(tree)

Results

seq = [1, 2, 3, 4, 5]
item = 42
for item in seq:
 print 'inside', item
print 'outside', item

data['seq'] = [1, 2, 3, 4, 5]
data['item'] = 42
data.push()
for data['item'] in data['seq']:
 print 'inside', data['item']
data.pop()
print 'outside', data['item']

So, Who Uses It?

Jinja (Template Engine)

PyCC (Code Analysis Tool)

Pylint (Code Analysis)

CodeConnector (Vaporware)

... and more...

PyCC
Cyclomatic Complexity

Detecting Code Complexity

CodeConnector
Inter-Code-Base Relationships

Finding Unused Code

Questions?

