Python Abstract
Syntax

Code Spelunking in Python

Cleveland Python Users Grovp - Alarch 2009

@ W’\Cl“t)*’e

INTERACTIVE

Abstract Syntax Trees?

@ High-level view of code withouvt any actval code
@ Represents the concepts of the code

@ Different from Concrete Syntax Trees
@ Represent the actual parsed grammar

@ Side eftect of compilation

@ Part of the compiler package (for now)

AST represents code, it’s not actually the code itself.
Prior to 2.5 python did not generate an intermediate

Concrete syntax trees, aka parse trees.

History Lesson

@ Ihntroduced in 2.2

@ Created by Greq Stein and Bill Tott

@ Part of Python-to-C compiler project
@ [Pure python implementation vnhil 2.6

@ Major changes in 2.5, 2.6 and 3.0

Changes in 2.5

@ Introduced _ast modvle
@ [Provides only node classes
@ Provided access to compiler AST

@ Not very useful yet, building the future

Passing _PyCF_ONLY_AST as a flag to compile will give access to the compiler’s This is different than the one
generated by compiler.ast

Changes in 2.6

@ hntroduction of ast module

@ Total reliance on the compiler's AST
@ Introduced NodeTransformer

@ Deprecated compiler package

@ AST trees can now be compiled to bytecode

Changes in 3.0

@ Removal of compiler package

@ Last remnants of original AST now gone

Compiler Tourism

Take a quick tour through the Python compiler. This process has changed a couple of times in recent years.

The Dark Ages (pre-2.5)

|. Generate parse tree

2. Emit bytecode

Quick and dirty way to do bytecode generation. Wasn’t really the easiest way but fast to implement. (See PEP 339)

(257,

(266,
def test(): 21,
é (261,
1, D)
1, D)
(262 Sl), (8, D)),
(11, "),
(299,
(4578
(55 R
(266,
(267,
(268,
(274,
277,
a,)
(326,
(303,
(304,
(305,
(306,
(307,
(309,
(310,
(311,
0 2 (4) — (312,
3 (313,
(314,
(315, (316, (317, (2,),
(16,)
@15 (316 (3172, "2")
1331133333331133)),
(4,900,
€Ol DDDDYA
& o5 200
MO

Keep it simple, CST’s get crazy quickly. parser module gives you access to parse trees. dis module (disassemble)
gives you access to bytecode.

Simple, right?

Not so much.

Not really all that easy to maintain, forced to go from parse tree to bytecode in one shot isn’t easy, error prone.

Compilers
.), Principles, Techniques,
and Tools

Ravi Sethi
Jeffrey D. Ullman

23 years and still kicking! Still the authoritative reference for compiler builders. Newer python compilers
implemented using the algorithms described in the book.

Anybody read it? You’ll feel much more at home now.

The World Since 2.5

|. Generate parse tree
2. Parse tree =) AST
3. AST =) Control Flow Graph (CFG)

4. CFG =) Bytecode

(257,

(266,
def test(): @21,
é (261,
€L, %
€L DY
(262 5 ot PeiCo, D),
(11, b1
(299,
4, ''),
(555 AT
(266,
(267,
0 2 (4) (268,
3 (274,
(277,
a1, ik
(326,
(303,
(304,
(305,
(306,
(307,
(309,
(310,
(None, (311,
(L (312,
C : A5 10E D ; (313,
(L (314,
(h (ST G316; (317, (2,
((C (1o, 0
(2), GHEE (316 + (3 leri(2,
(23))) 0)2)31313133)3)))),
D)) (458509,
1) €6, 3DDYYS
o PAED
W)

‘round and ‘round we go.
Same basic process as 2.3 except that AST is generated in the middle.

Purposely ignoring CFG because it’s not accessible to us.

J))),
)

That's better!

We can work with that.

Possible Uses

@ Code spelunking

@ Template engines

@ Language conversion

@ Static analysis

@ Runtime code manipulation

@ ... the possibilities are endless...

Code SpelunkKing

@ Code is just text content
@ Leqgacy code not sate tor intropsection
@ Determine relationships in the code

@ tind vnwsed code in a large codebase

Template Engines

@ Still have to parse the code

@ No more string concatenation

@ Safer and easier to build

Lanquage Conversion

@ Originally for Python-C compiler

@ Can transtorm Python to other languages

@ XSLT of Code (sorry)

Static Analysis

@ Enforce coding standards 0PEP8)

@ Detect potentially complex code

@ Determine where re-factoring may be helpful

Runtime Code fManipulation

@ Not a very nice thing to do

@ MMay be useful in places where using string
concatenation to build up functions

@ Not a very nice thing to do

@ On second thought... don't do this

NodeVisitor

@ Walks the node tree
@ Allows for read-only processing of nodes
@ Subclass of NodeVisitor

@ lmplement your visit_Node funtions

The Visitor

class (, object):

def (, hode):
name node.names:
.put_symbol(name[0])

def (, hode):
symbols = []
symbol, _ node.names:

symbols.append(symbol)
.put_symbol(node.modname, symbols)

Usage

my_file = open().read()

tree = compiler.parseFile()

or preferably

tree = compile(my_file, . , ast.PyCF_ONLY_AST)

my_visitor = ImportVisitor()
my_visitor.virtual_symbols = get_virtual_symbols(tree)
visitor.walk(tree, my_visitor)

Resvits

set(['InvitationsCategoryResultsPage',
'DownloadsSearchResultsPage’,
'DesktopDownloadsCategoryResultsPage’,

bty

NodeTransformer

@ New in 2.6
@ Specialized NodeVisitor
@ Allows for transformation of nodes in-place

@ Can remove nodes in 2 tree

Code?

class (NodeTransformer):
def ¢ , method):
Expr(Call(
Attribute(Name(, Load()), method, Load()),
[1,caftl ;
))
def (’ nOde):
.generic_visit(node)
return [.context(), hode, .context()]
def ¢ , hode):

.generic_visit(node)
return Subscript(

Name(, Load()),
Index(Str(node.id)),
node.ctx

Usage

my_file = open().read()
tree = compile(my_file, . , ast.PyCF_ONLY_AST)

out_tree = GenshiSemantics().visit(tree)

S€q = [1: 23 33 43 5]

1tem = 42
1tem

seq:

b

, ltem
1tem

Resvits

—_—

datal a1, 2, °3.54,55]

datal] = 42
data.push()
data[] datal
, datal
data.pop()

, data[

]

4

@ Jinja (Template Engined
@ PyCC (Code Analysis TooD
@ Pylint (Code Analysis)
@ CodeConnector (Vaporware)

@ ... and more...

PyCC

Cyclomatic Complexity
Detecting Code Complexity

CodeConnector

lnter-Code-Base Relationships
finding Unused Code

Ruestions?

